Visual Intelligence
第2卷第4期在线出书
Visual Intelligence是由中国图象图形学学会垄断、Springer出书社出书的外洋学术期刊,以通达赢得(OA)的容颜出书,不收取作家任何稿件惩办用度。期刊于2023年创刊,主编是中国工程院王耀南院士。期刊英敢于鞭策“视觉”与“智能”的有机结伙与协同发展,主要发表视觉智能范围具有外洋先进水平的新表面、新念念想、新技艺等的商榷后果和技艺进展,为促进视觉智能技艺的高质料发展和学术疏导业绩。期刊入选2022中国科技期刊不凡手脚沟通高起始新刊,是《图像图形范围高质料科技期刊分级目次》T1级期刊,现已被DOAJ、DBLP、EBSCO、Google Scholar、CNKI、Wanfang等国表里病笃数据库收录。迎接投稿!
内 容 概 览
本期共发表8篇论文,包括5篇“多媒体安全中的识别与对抗”专刊论文和3篇商榷性论文(Research Article)。
Special Issue Articles
1. Patch is Enough: Naturalistic Adversarial Patch against Vision-Language Pre-training Models
援用本文:Kong, D., Liang, S., Zhu, X., Zhong, Y., & Ren, W. (2024). Patch is enough: naturalistic adversarial patch against vision-language pre-training models. Visual Intelligence 2, Article No. 33.
全文联结:https://link.springer.com/article/10.1007/s44267-024-00066-7
本文简介:挫折性和当然性的折中是当今对抗挫折的商榷热门。针对当然性的挑战,本文提议用当然对抗补丁的挫折形式代替此前要领的多模态扰动形式。此外,在补丁迭代更新经过中,本文商榷引入了扩散模子,欺诈扩散先验和文本甩掉对补丁进行当然性的甩掉,有用回避补丁检测器的驻扎。
2. WFSS: Weighted Fusion of Spectral Transformer and Spatial Self-Attention for Robust Hyperspectral Image Classification against Adversarial Attacks
援用本文:Tang, L., Yin, Z., Su, H., Lyu, W., & Luo, B. (2024) WFSS: weighted fusion of spectral transformer and spatial self-attention for robust hyperspectral image classification against adversarial attacks. Visual Intelligence 2, Article No. 5.
全文联结:https://link.springer.com/article/10.1007/s44267-024-00038-x
本文简介:基于深度学习的高光谱图像分类取得强大生效的同期也濒临对抗挫折要挟。怎么提高模子对抗对抗挫折的鲁棒性?本文通过Transformer缔造光谱间的长距离依赖关系来进步模子鲁棒性。本质甩掉标明本高光谱图像分类模子精度和在对抗挫折条目下的鲁棒性均或者达到SOTA性能。
3. RobustMQ: Benchmarking Robustness of Quantized Models
援用本文: Xiao, Y., Liu, A., Zhang, T., Qin, H., Guo, J., & Liu, X. (2023). RobustMQ: benchmarking robustness of quantized models. Visual Intelligence 1, Article No. 30.
全文联结:https://link.springer.com/article/10.1007/s44267-023-00031-w
本文简介:神经荟萃量化照旧成为在资源有限的斥地上部署深度神经荟萃的要害技艺。干系词,在面对真确天下中各式噪声时,量化模子极易推崇出脆弱性。本文缔造了RobustMQ评估基准。
4. Imperceptible Backdoor Watermarks for Speech Recognition Model Copyright Protection
援用本文: Liao, J., Yi, L., Shi, W., Yang, W., Fang, Y., & Yang, X. (2024). Imperceptible backdoor watermarks for speech recognition model copyright protection. Visual Intelligence 2,Article No. 23.
全文联结:https://link.springer.com/article/10.1007/s44267-024-00055-w
本文简介:本文提议了黑盒水印要领来考证语音识别模子的系数权。这种要领不错缩短挫折者拜谒预磨练模子况兼创建未经授权的AI业绩的风险。具体而言,本文提议了高斯噪声水印、极频高斯噪声水印和无关音频水印三种水印要领。
5. A Divide-and-Conquer Reconstruction Method for Defending against Adversarial Example Attacks
援用本文: Liu, X., Hu, J., Yang, Q., Jiang, M., He, J., & Fang, H. (2024). A divide-and-conquer reconstruction method for defending against adversarial example attacks. Visual Intelligence 2, Article No. 30.
全文联结:https://link.springer.com/article/10.1007/s44267-024-00061-y
本文简介:本文提议一种驻扎对抗样本挫折的要领,称之为“分而治之的重建要领”。最初遐想了一个对抗挫折分类模块,欺诈不同对抗样本之间的高频信息相反进行多分类;然后,迪士尼彩乐园靠谱吗构建了一个分而治之的重建模块,欺诈针对每种对抗挫折磨练的图像重建模子,或者有用惩办不同类型的挫折。关于难以准确分类的对抗挫折,使用针对夹杂挫折磨练的重建荟萃,以确保在这些情况下的驻扎效果。
Research Article
1. ViTGaze: Gaze Following with Interaction Features in Vision Transformers
援用本文: Song, Y., Wang, X., Yao, J., Liu, W., Zhang, J., & Xu, X. (2024). ViTGaze: gaze following with interaction features in vision transformers. Visual Intelligence 2, Article No. 31.
全文联结:https://link.springer.com/article/10.1007/s44267-024-00064-9
本文简介:本文变调性地提议基于视觉Transformer(ViT)的单模态介怀追踪框架ViTGaze,将自肃穆力中的区域交互迁徙到东说念主与场景之间的交互。本质甩掉标明,该要领在系数单模态要领中竣事了首先进的性能,况兼在参数减少59%的情况下,与多模态要领的性能极度接近,说明了预磨练ViT模子在介怀追踪任务上的有用性。
2. Spatial-Temporal Initialization Dilemma: Towards Realistic Visual Tracking
援用本文:Liu, C., Yuan, Y., Chen, X., Lu, H., & Wang, D. (2024). Spatial-temporal initialization dilemma: towards realistic visual tracking. Visual Intelligence 2, Article No. 35.
全文联结:https://link.springer.com/article/10.1007/s44267-024-00068-5
本文简介:现存的标的追踪评测基准与面向骨子应用的开动化情况存在相反,本文充分探究了面向骨子追踪的非遐想开动化所带来的开动化逆境问题,并提议了一个高效的开动化赔偿框架。该赔偿框架包含空间修正和时刻追逐两个模块,不错与放浪标的追踪模子适配,从而有用进步追踪模子关于非遐想开动化噪声的抗干豫身手。
3. Unified Regularity Measures for Sample-Wise Learning
援用本文: Zhang, C., Yuan, M., Ma, X., Liu, Y., Lu, H., Wang, L., Su, Y., & Liu, Y. (2024). Unified regularity measures for sample-wise learning. Visual Intelligence 2, Article No. 38.
全文联结:https://link.springer.com/article/10.1007/s44267-024-00069-4
本文简介:针对不相同本在学习和测试经过中孝敬不对等心仪,本文从神经荟萃牵挂和泛化的角度开赴,提议了一双长入的样本划定性测量盘算来探索表征内在样本模式的要领。最初,通过筹划磨练经过中样本正确分类的积聚数目来量化荟萃泛化经过中的流露性,其次通过渐忘事件统计t时刻之前样本正确分类的次数,从而示意样本划定的省略情味。进一步的磨练和测试加快应用说明了所撮要领的有用性。
迪士尼彩乐园3入口